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Abstract 

Background: The abundance of biomedical text data coupled with advances in natu-
ral language processing (NLP) is resulting in novel biomedical NLP (BioNLP) applica-
tions. These NLP applications, or tasks, are reliant on the availability of domain-specific 
language models (LMs) that are trained on a massive amount of data. Most of the exist-
ing domain-specific LMs adopted bidirectional encoder representations from trans-
formers (BERT) architecture which has limitations, and their generalizability is unproven 
as there is an absence of baseline results among common BioNLP tasks.

Results: We present 8 variants of BioALBERT, a domain-specific adaptation of a lite 
bidirectional encoder representations from transformers (ALBERT), trained on biomedi-
cal (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine-tuned for 
6 different tasks across 20 benchmark datasets. Experiments show that a large variant 
of BioALBERT trained on PubMed outperforms the state-of-the-art on named-entity 
recognition (+ 11.09% BLURB score improvement), relation extraction (+ 0.80% BLURB 
score), sentence similarity (+ 1.05% BLURB score), document classification (+ 0.62% 
F1-score), and question answering (+ 2.83% BLURB score). It represents a new state-of-
the-art in 5 out of 6 benchmark BioNLP tasks.

Conclusions: The large variant of BioALBERT trained on PubMed achieved a higher 
BLURB score than previous state-of-the-art models on 5 of the 6 benchmark BioNLP 
tasks. Depending on the task, 5 different variants of BioALBERT outperformed previous 
state-of-the-art models on 17 of the 20 benchmark datasets, showing that our model is 
robust and generalizable in the common BioNLP tasks. We have made BioALBERT freely 
available which will help the BioNLP community avoid computational cost of training 
and establish a new set of baselines for future efforts across a broad range of BioNLP 
tasks.
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Background
The increasing amount of published biomedical literature, such as health literacy [1] and 
clinical reports [2] demands more precise and generalized biomedical natural language 
processing (BioNLP) tools for information extraction. Recent advances in natural lan-
guage processing (NLP) have accelerated the development of pre-trained language mod-
els (LMs) that can be used for a wide variety of tasks in the BioNLP domains [3].

However, directly fine-tuning of the state-of-the-art (SOTA) LMs for bioNLP tasks, 
like Embeddings from Language Models (ELMo) [4], Bidirectional Encoder Representa-
tions from Transformers (BERT) [5] and A Lite Bidirectional Encoder Representations 
from Transformers (ALBERT) [6], yielded poor performances because these LMs were 
trained on general domain corpus (e.g., Wikipedia, Bookcorpus, etc.), and were not 
designed for the requirements of biomedical documents that comprise of different word 
distribution, and having complex relationship [7]. To overcome this limitation, BioNLP 
researchers have trained LMs on biomedical and clinical corpus and proved its effective-
ness on various downstream tasks in BioNLP tasks [8–15].

Jin et al. [9] trained biomedical ELMo (BioELMo) with PubMed abstracts and found 
features extracted by BioELMo contained entity-type and relational information rel-
evant to the biomedical corpus. Beltagy et al. [11] trained BERT on scientific texts and 
published the trained model as Scientific BERT (SciBERT). Similarly, Si et al. [10] used 
task-specific models and enhanced traditional non-contextual and contextual word 
embedding methods for biomedical named-entity-recognition by training BERT on clin-
ical notes corpora. Peng et al. [12] presented a BLUE (Biomedical Language Understand-
ing Evaluation) benchmark by designing 5 tasks with 10 datasets for analysing natural 
biomedical LMs. They also showed that BERT trained on PubMed abstracts and clini-
cal notes outperformed other LMs which were trained on general corpora. The most 
popular biomedical pre-trained LMs is BioBERT (BERT for Biomedical Text Mining) 
[13] which was trained on PubMed and PubMed Central (PMC) corpus and fine-tuned 
on 3 BioNLP tasks including Relation Extraction (RE), named-entity-recognition (NER), 
and Question Answering (QA). Gu et al. [14] developed PubMedBERT by training from 
scratch on PubMed articles and showed performance gained over models trained on 
general corpora. They developed a domain-specific vocabulary from PubMed articles 
and demonstrated a boost in performance on the domain-specific task. Another bio-
medical pre-trained LM is KeBioLM [15] which leveraged knowledge from the UMLS 
(Unified Medical Language System) bases. KeBioLM was applied to 2 BioNLP tasks. 
Table 1 summarises the training corpora used in previous pre-trained biomedical LMs, 
whereas Table 2 presents a number of datasets previously used to evaluate pre-trained 
LMs on various BioNLP tasks. In our preliminary work, we showed that a customised 
domain-specific LM outperforms SOTA LMs in NER tasks [16].

Previous pre-trained LMs, including the work of Peng et al. [12], have common limita-
tions: (1) these LMs are trained on limited domain-specific corpora (Table 1), whereas 
some tasks contain both clinical and biomedical terms, and therefore training with 
broader coverage of domain-specific corpora can improve performance; (2) by adopting 
BERT architecture, its’ training is slow and requires huge computational resources; and 
(3) all these LMs were demonstrated with selected BioNLP tasks (Table 2), and hence 
their generalizability is unproven.
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In this study, we address the defined gaps in prior studies and hypothesize that training 
ALBERT that has been shown to be a superior model compared to BERT in NLP tasks 
[6] on both biomedical (PubMed and PMC) and clinical notes (MIMIC-III) corpora can 
be more effective and computationally efficient in a wide range of BioNLP tasks.

We present biomedical ALBERT (BioALBERT), a new LM designed and optimised to 
achieve benchmark performance on various BioNLP tasks. BioALBERT is based on the 
architecture of an ALBERT LM and is trained on a corpus of biomedical and clinical 
texts. We fine-tuned and compared the effectiveness of BioALBERT on 6 BioNLP tasks 
with 20 biomedical and clinical benchmark datasets with different sizes and complexity. 
Compared with most existing BioNLP LMs that are mainly focused on limited tasks, 
a large variant of BioALBERT trained on PubMed data achieved SOTA performance 
(BLURB score) on 5 out of 6 BioNLP tasks. Depending on the task, 5 different variants 
of BioALBERT outperformed previous SOTA models in 17 out of 20 tested datasets. 

Table 1 Data used in prior state-of-the-art studies compared to ours (BioALBERT)

Training corpus BioBERT [13] SciBERT [11] BLUE [12] PubMedBERT 
[14]

KeBioLM [15] BioALBERT

General � × � × × �

PMC � × × � � �

PubMed � × � � � �

Clinical notes × × � × × �

Table 2 Comparison of the biomedical datasets in prior studies and ours (BioALBERT)

Datasets BioBERT [13] SciBERT[11] BLUE [12] PubMedBERT 
[14]

KeBioLM [15] BioALBERT

Share/Clefe [17] × × � × × �

BC5CDR (disease) [18] � � � � � �

BC5CDR (chemical) 
[18]

� � � � � �

JNLPBA [19] � × × � � �

LINNAEUS [20] � × × × × �

NCBI (disease) [21] � � × � � �

Species-800 (S800) [22] � × × × × �

BC2GM [23] � × × � � �

DDI [24] × × � � � �

ChemProt [7] � � � � � �

i2b2 [25] × × � × × �

Euadr [26] � × × × × �

GAD [27] � × × � � �

BIOSSES [28] × × � � × �

MedSTS [29] × × � × × �

MedNLI [30] × × � × × �

HoC [31] × × � � × �

BioASQ 4b [32] � × × � × �

BioASQ 5b [32] � × × � × �

BioASQ 6b [32] � × × � × �
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BioALBERT achieved higher performance in NER, RE, Sentence similarity, Document 
classification and a higher Accuracy (lenient) score in QA than the current SOTA LMs. 
To facilitate developments in the important BioNLP community, we make the weights of 
pre-trained BioALBERT LMs publicly available.1

Methods
BioALBERT has the same architecture as ALBERT and addresses the shortcomings of 
BERT-based biomedical models. First, BioALBERT uses cross-layer parameter shar-
ing and reduces 110 million parameters of the 12-layer BERT-base model to 31 million 
parameters while keeping the same number of layers and hidden units. This is achieved 
by learning parameters for the first block and reusing the block in the remaining 11 lay-
ers. Secondly, BioALBERT uses sentence order prediction (SOP) loss that is designed to 
address the ineffectiveness of the next sentence prediction (NSP) loss used in the BERT. 
SOP enables the model to learn about discourse-level coherence characteristics from a 
finer-grained distinction and thus leads to better learning representation in downstream 
tasks. Thirdly, BioALBERT uses factorized embedding parameterization that decom-
poses the large vocabulary embedding matrix into two small matrices. This allows us 
to reduce the number of parameters between vocabulary and the first hidden layer. In 
BERT-based biomedical models, embedding size equals the hidden layer’s size. Lastly, 
BioALBERT is trained on massive biomedical corpora to be effective on BioNLP tasks 
to overcome the issue of the shift of word distribution from general domain corpora to 
biomedical corpora.

Figure 1 depicts an overview of pre-training, fine-tuning, task variants, and datasets 
used in benchmarking BioNLP. We describe ALBERT and then the pre-training and 
fine-tuning process employed in BioALBERT.

ALBERT

ALBERT [6] is built on the architecture of BERT to mitigate a large number of param-
eters in BERT, which causes model degradation, memory issues, and degraded 

Fig. 1 An overview of pre-training, fine-tuning and the diverse tasks and datasets present in Benchmarking 
for BioNLP using BioALBERT

1 https:// github. com/ usmaa nn/ BioAL BERT.

https://github.com/usmaann/BioALBERT
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pre-training time. ALBERT is a contextualised LM that is pre-trained using bidirectional 
transformers like BERT and is based on a masked language model (MLM). ALBERT 
employs an MLM to predict randomly masked words in a sequence and is capable of 
learning bidirectional representations.

ALBERT is trained on the same English Wikipedia and BooksCorpus as in BERT; 
however, it reduced BERT parameters by 87% and could be trained nearly twice as fast. 
ALBERT reduced parameter requirements by factorizing and decomposing a large 
vocabulary embedding matrix into two smaller matrixes. Other ALBERT enhancements 
include the use of SOP loss rather than NSP loss and the implementation of cross-layer 
parameter sharing, which keeps parameters from rising with the depth of the network. 
In the following section, we describe the steps involved in training BioALBERT.

Pre‑training BioALBERT

We first initialized BioALBERT with weights from ALBERT during the training phase. 
Biomedical terminologies have terms that could mean different things depending upon 
its context of appearance. For example, ER could be referred to ‘estrogen receptor’ gene 
or its product as protein. Similarly, RA may represent ‘right atrium’ or ‘rheumatoid 
arthritis’ depending upon the context of appearance. On the other hand, two termi-
nologies could be used to refer to a similar concept, such as ‘heart attack’ or ‘myocar-
dial infarction’. As a result, pre-trained LM trained on general corpus often obtains poor 
results.

BioALBERT is the first domain-specific LM trained on biomedical domain corpus 
and clinical notes. BioALBERT is trained on abstracts from PubMed, full-text articles of 
PMC, and clinical notes (MIMIC) and their combination. These unstructured and raw 
corpus were transformed to structured format by processing raw text files into a single 
sentence in which: (1) all blank lines within a text were deleted, and (2) any line with a 
length of fewer than 20 characters was removed. Overall, PubMed had 4.5 billion words, 
PMC had 13.5 billion, and MIMIC had 0.5 billion.

We used sentence embeddings for tokenization of BioALBERT by pre-processing the 
data as a sentence text. Each line was considered as a sentence keeping the maximum 
length to 512 words by trimming. If the sentence was shorter than 512 words, then 
more words were embedded from the next line. An empty line was used to define a new 
document. All of our models are trained with 3125 warm-up steps. We employed the 
LAMB optimizer to train our models and restricted the vocabulary size to 30K. During 
the training process, GeLU activation is employed in all variations of models. The train-
ing batch size for BioALBERT base models was 1024; however, due to computational 
resource constraints, the training batch size for BioALBERT large models was reduced 
to 256. Table 3 summarises the parameters used during the training stage.

Table 3 summarises the parameters used during the training stage.
We present 8 models (Table 4) consisting of 4 base and 4 large LMs. We observed that 

with a larger batch size during training, both base and large LMs were successful on the 
V3-8 TPU. The base model contained an embedding dimension of 128 and 12 million 
parameters, whereas the large model had an embedding dimension of 256 and 16 mil-
lion parameters.
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Fine‑tuning BioALBERT

Similar to other SOTA biomedical LMs,2 BioALBERT was tested on a number of down-
stream BioNLP tasks which required minimal architecture alteration. BioALBERT’s 
computational requirements were not significantly large compared to other baseline 
models, and fine-tuning only required relatively small computation compared to the 
pre-training. BioALBERT employed reduced physical memory, improved parameter 
sharing approaches, and learned word embeddings via sentence piece tokenization, giv-
ing it higher performance and faster training than existing SOTA biomedical LMs.

We used the weights of the pre-trained BioALBERT LM during fine-tuning. We used 
an AdamW optimizer with a learning rate of 0.00001. During training, a batch size of 
32 was used. In the NER task, we fixed the length of sentences to 512, whereas, for the 
remaining 5 tasks, we used a sentence length of 128 in our experiments. Further, we 
lower-cased all words. Finally, we fine-tuned BioALBERT using 10k training steps and 

Table 3 Summary of parameters used in the pre-training of BioALBERT

Summary of all parameters used: (pre‑training)

Architecture ALBERT

Activation function GeLU

Attention heads 12

No. of layers 12

Size of hidden layer 768

Size of embedding 128

Size of vocabulary 30k

Optimizer used LAMB

Training batch size 1024 for base models 
256 for large models

Evaluation batch size 16

Maximum sentence length 512

Maximum predictions per sentence 20

Warm-up steps 3125

Table 4 BioALBERT trained on different training steps, different combinations of the text corpora, 
and BioALBERT model version and size

Model 
version

BioALBERT size Combination of corpus used for training Number 
of training 
steps

1 Base1 Wikipedia + BooksCorpus + PubMed 200K

2 Base2 Wikipedia + BooksCorpus + PubMed+ PMC 470K

3 Large1 Wikipedia + BooksCorpus + PubMed 200K

4 Large2 Wikipedia + BooksCorpusPubMed + PMC 470K

5 Base3 Wikipedia + BooksCorpus + PubMed + MIMIC-III 200K

6 Base4 Wikipedia + BooksCorpus + PubMed + PMC + MIMIC-III 200K

7 Large3 Wikipedia + BooksCorpus + PubMed + MIMIC-III 270K

8 Large4 Wikipedia + BooksCorpus + PubMed + PMC + MIMIC-III 270K

2 We followed the same architectural modification as previous studies in the downstream task.
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320 warm-up steps. The test splits were used for prediction, and the evaluation met-
ric was compared with previous SOTA models. Table  5 summarises all fine-tuning 
parameters.

Experimental settings

We tested with different experimental settings during the pre-training and fine-tuning 
stages. Our experiments produced best results using the parameters summarised Table 3 
for pre-training, and Table 5 for fine-tuning.

Tasks and datasets

We fine-tuned BioALBERT on 6 different BioNLP tasks with 20 datasets that cover a 
wide variety of data quantities and challenges (Table 6). We rely on pre-existing datasets 
that are widely supported in the BioNLP community and describe each of these tasks 
and datasets.

Table 5 Summary of parameters used in fine-tuning

Summary of all parameters used: (fine‑tuning)

Optimizer used AdamW

Training batch size 32

Checkpoint saved 500

Learning rate 0.00001

Training steps 10k

Warm-up steps 320

Table 6 Statistics of the datasets used

Dataset Task Domain Train Dev Test Metric

BC5CDR (disease) NER Biomedical 109,853 121,971 129,472 F1-Score

BC5CDR (chemical) NER Biomedical 109,853 117,391 124,676 F1-Score

NCBI (disease) NER Clinical 135,615 23,959 24,488 F1-Score

JNLPBA NER Biomedical 443,653 117,213 114,709 F1-Score

BC2GM NER Biomedical 333,920 70,937 118,189 F1-Score

LINNAEUS NER Biomedical 267,500 87,991 134,622 F1-Score

Species-800 (S800) NER Biomedical 147,269 22,217 42,287 F1-Score

Share/Clefe NER Clinical 4628 1075 5195 F1-Score

GAD RE Biomedical 3277 1025 820 F1-Score

Euadr RE Biomedical 227 71 57 F1-Score

DDI RE Biomedical 2937 1004 979 F1-Score

ChemProt RE Biomedical 4154 2416 3458 F1-Score

i2b2 RE Clinical 3110 11 6293 F1-Score

HoC Document classification Biomedical 1108 157 315 F1-Score

MedNLI Inference Clinical 11,232 1395 1422 Accuracy

MedSTS Sentence similarity Clinical 675 75 318 Pearson

BIOSSES Sentence similarity Biomedical 64 16 20 Pearson

BioASQ 4b-factoid QA Biomedical 327 – 161 Accuracy (Lenient)

BioASQ 5b-factoid QA Biomedical 486 – 150 Accuracy (Lenient)

BioASQ 6b-factoid QA Biomedical 618 – 161 Accuracy (Lenient)
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• Named entity recognition (NER) Recognition of proper domain-specific nouns in a 
biomedical corpus is the most basic and important BioNLP task. The F1-score was 
adopted as a NER evaluation metric. BioALBERT was evaluated on 8 NER bench-
mark datasets (From Biomedical and Clinical domain): We used NCBI (Disease) 
[21], BC5CDR (Disease) [18], BC5CDR (Chemical) [18], BC2GM [23], JNLPBA [19], 
LINNAEUS [20], Species-800 (S800) [22] and Share/Clefe [17] datasets.

• Relation extraction (RE) RE tasks aim to identify relationship among entities in a sen-
tence. The annotated data were compared with relationship and types of entities. As 
an evaluation metric, the micro-average F1-score metric was used. For RE, we used 
DDI [24], Euadr [26], GAD [27], ChemProt [7] and i2b2 [25] datasets.

• Document classification Document classification tasks classify the whole document 
into various categories. Multiple labels from texts are predicted in the multi-label 
classification task. We followed standard practice and reported the F1-score for the 
document classification task. For document classification, we used HoC (the hall-
marks of Cancers) [31] dataset.

• Inference Inference tasks determine if the premise sentence implies the hypothesis 
sentence. It mainly focuses on causation relationships between sentences. For evalu-
ation, we used overall standard accuracy as a metric. For inference, we used MedNLI 
[30] dataset.

• Sentence similarity (STS) STS task is to predict similarity scores by estimating 
whether two sentences deliver similar contents. We used Pearson correlation coef-
ficients to assess similarity, as is standard. We used MedSTS [29] and BIOSSES [28] 
datasets for sentence similarity task.

• Question answering (QA) QA is the task of answering questions asked in the natural 
language given relevant passages. We used accuracy as an evaluation metric for the 
QA task. For QA, we used BioASQ factiod [32] datasets.

Results and discussion

• Comparison with SOTA biomedical LMs Table  7 summarises the results34 We 
observe that the performance of BioALBERT5 is higher than SOTA models in 5 out 
of the 6 tasks. Overall, a large version of BioALBERT that is trained on PubMed 
abstract achieved the best results among all the tasks. To be precise, depending on 
tasks, 5 different variants of BioALBERT outperformed previous SOTA models in 17 
out of 20 tested datasets.

For NER, BioALBERT was significantly higher compared to SOTA methods on all 8 
datasets (ranging from 4.61 to 23.71%) and outperformed the SOTA models by 11.09% 
in terms of micro averaged F1-score (BLURB score). For, Share/Clefe dataset, BioAL-
BERT increased the performance by 19.44%, 10.63% for BC5CDR-disease, 4.61% for 

3 Refer to Table 4 for more details of BioALBERT size and training corpus and Table 6 for the evaluation metric used in 
each dataset. for all the BioALBERT variants in comparison to the baselines when fine-tuned on tested datasets.
4 The baseline results were obtained from the original study.
5 Here, we discuss the best model of BioALBERT Out of 8 versions of BioALBERT.
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BC5CDR-chemical, 4.74% for JNLPBA, 6.19% for Linnaeus, 7.47% for NCBI-disease, 
23.71% and 12.25% for S800 and BC2GM datasets, respectively.

For RE, BioALBERT outperformed SOTA methods on 3 out of 5 datasets by 1.69%, 
0.82%, and 0.46% on DDI, ChemProt and i2b2 datasets, respectively. On average (micro), 
BioALBERT obtained a higher F1-score (BLURB score) of 0.80% than the SOTA LMs. 
For Euadr and GAD performance of BioALBERT slightly drops because the splits of data 
used are different. We used an official split of the data provided by authors, whereas the 
SOTA method reported the results using 10-fold cross-validation.

For STS, BioALBERT achieved higher performance on both datasets by a 1.05% 
increase in average Pearson score (BLURB score) as compared to SOTA models. In 
particular, BioALBERT achieved improvements of 0.50% for BIOSSES and 0.90% for 
MedSTS.

Similarly, for document classification, BioALBERT slightly increase the performance 
by 0.62% for the HoC dataset and the inference task (MedNLI dataset), the performance 
of BioALBERT drops slightly, and we attribute this to the average length of the sentence 
being smaller compared to others.

For QA, BioALBERT achieved higher performance on all 3 datasets and increased 
average accuracy (lenient) score (BLURB score) by 2.83% compared to SOTA models. 
In particular, BioALBERT improves the performance by 1.08% for BioASQ 4b, 2.31% for 
BioASQ 5b and 5.11% for BioASQ 6b QA datasets respectively as compared to SOTA.

Thus, we conclude that our results validate our hypothesis that training ALBERT that 
addresses limitations of BERT on biomedical and clinical notes is more effective and 
computationally faster compared to other biomedical language models.

We note that the performance of ALBERT (both base and large), when pre-trained 
on MIMIC-III, in addition to PubMed and combination of PubMed and PMC, drops as 
compared to the same pre-trained ALBERT without MIMIC-III, especially in RE, STS, 
and QA tasks. We attribute this to the following observations (1) clinical (MIMIC-III) 
data consists of notes from the ICU of Beth Israel Deaconess Medical Center (BIDMC) 
only, the data size is small (0.5 billion words) compared to the biomedical (PubMed + 
PMC) data (18 billion words); and (2) problem of bias in a training data. For instance, in 
MIMIC-III, heart disease is more common in males compared to females—an example 
of gender bias is that there are fewer clinical studies involving black patients compared 
to other groups—an example of ethnicity bias. Based on these observations, we suggest 
that in future works it is necessary to identify and reduce any form of bias that allows 
the model to make fair decisions without favoring any group. Further, clinical notes dif-
fer substantially from biomedical literature. Consequently, models pretrained on clinical 
notes perform poorly on biomedical tasks; therefore, it is advantageous to create sepa-
rate benchmarks for these two domains.

Analysis

• Run-time statistics We compared pre-training run-time statistics of BioALBERT 
with BioBERT. We demonstrated that all the variants of BioALBERT outperformed 
BioBERT. The difference in performance is significant, identifying BioALBERT as 
a robust and practical model. BioBERTBase1 trained on PubMed took 10 days, and 
BioBERTBase2 trained on PubMed and PMC took 23 days, whereas all models of Bio-
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ALBERT took less than 5 days for training an equal number of steps. Table 8 shows 
the run-time statistics for both pre-trained LMs.

• Effect of using additional training data We used additional corpora of different sizes 
for training and investigated their effect on performance. For the BioALBERT base 
model trained on the combination of PubMed, PMC, and MIMIC-III, we set the 
number of pre-training steps to 200K and varied the training corpus size. We saved 
the pre-trained weights from BioALBERT at different pre-training steps to measure 
how the number of pre-training steps affects its performance on fine-tuning tasks. 
Figure 2 (left) shows the performance changes on the same three datasets with the 
number of pre-training steps. Further, Fig.  2 (right) shows that the performance 
on three datasets (share/clefe, i2b2, MedNLI) reaches optimal performance when 
trained on 3 billion words and performance slightly varies when we increase the 
size of the training corpus. These results demonstrate that choosing the right size of 
training data and pre-trained checkpoints are important to achieve the optimal per-
formance for BioNLP tasks.

• BioALBERT versus ALBERT We compared the performance of ALBERT trained 
on general corpora to BioALBERT with the results shown in Fig. 3. We fine-tuned 

Table 8 Comparison of run-time (in days) statistics of BioALBERT versus BioBERT

Refer to Table 4 for more details of BioALBERT size. BioBERTBase1 and BioBERTBase2 refers to BioBERT trained on PubMed and 
PubMed+PMC respectively

Model Training 
time (in 
days)

BioBERTBase2 23.00

BioBERTBase1 10.00

BioALBERTBase1 3.00

BioALBERTBase2 4.08

BioALBERTLarge1 2.83

BioALBERTLarge2 3.88

BioALBERTBase3 4.02

BioALBERTBase4 4.45

BioALBERTLarge3 4.62

BioALBERTLarge4 4.67

Fig. 2 Performance of BioALBERT at different checkpoints (left) and effects of varying the size of the PubMed 
corpus for pre-training (right)
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ALBERT on downstream tasks the same way we fine-tuned BioALBERT. BioALBERT 
consistently achieved higher performance on all 6 tasks (20 out of 20 datasets) com-
pared to ALBERT. Additionally, as shown in Table 9, we evaluated ALBERT and Bio-
ALBERT predictions to determine the effect of pre-training on NER and HoC tasks. 
For NER, we observed that although the gains of BioALBERT are small compared 
to ALBERT, BioALBERT can better recognise the biomedical entities compared to 
ALBERT in both JNLPBA and Share/Clefe datasets. Similarly, for HoC data, BioAL-
BERT can better recognise biomedical entities compared to ALBERT. We attribute 
the increase in performance of BioALBERT to a word distribution shift from general 
domain corpora to biomedical corpora in the BioNLP task. The analysis presented 
in Fig. 3 and Table 9 validates our hypothesis that training ALBERT on biomedical 
corpora improves the performance compared to LMs trained on LM.

Limitations and future directions
Although domain-specific LMs have improved the performance for BioNLP tasks, there 
are several limitations that warrant future work. In supervised machine learning, pre-
training of domain-specific LMs requires a large volume of domain-specific corpora and 
expensive computational resources such as GPUs/TPUs for longer pre-training duration 

Fig. 3 Comparison of BioALBERT versus ALBERT. The evaluation scale is same as previously reported in 
Table 7

Table 9 Prediction samples from ALBERT and BioALBERT

Bold entities are better recognised by BioALBERT

Dataset Model Sample

JNLPBA ALBERT Number of glucocoticoid receptors in lymphocytes and their sensitivity to...

BioALBERT Number of glucocoticoid receptors in lymphocytes and their sensitivity to...

Share/Clefe ALBERT The mitral valve leaflets are mildly thickened. There is mild mitral annular calcification. 
TRICUSPID VALVE...

BioALBERT The mitral valve leaflets are mildly thickened. There is mild mitral annular calcifica‑
tion. TRICUSPID VALVE...

HoC ALBERT In contrast, 15 Gy increased the expression of p27 in radiosensitive tumors and 
reduced it in radioresistant tumors

BioALBERT In contrast, 15 Gy increased the expression of p27 in radiosensitive tumors and 
reduced it in radioresistant tumors
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[34]. To address these challenges, there is a need for time-efficient and low-cost meth-
ods. One of these methods is self-supervised learning (SSL) [35] which learns from 
unlabeled data. SSL could be one of the future directions to explore to overcome these 
limitations using transfer learning. Another emerging area is exploring generalized zero-
shot learning (GZSL) [36] where the training classes are presented only at test time. Fur-
ther, the performance of domain-specific LMs can be improved by reducing biases and 
injecting human-curated knowledge bases [37].

Conclusion
We present BioALBERT, the first adaptation of ALBERT trained on both biomedical text 
and clinical data. Our experiments show that training general domain language models 
on domain-specific corpora result in an increase in performance across a range of bio-
medical BioNLP tasks. A large variant of BioALBERT trained on PubMed outperforms 
previous state-of-the-art models on 5 out of 6 benchmark BioNLP tasks. We expect that 
the release of the BioALBERT models and data will support the development of new 
applications built from biomedical NLP tasks.
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